> 463_ -bjbj 4Tbb$F@@8|b$qB*(AAAAAAA$DMGfBB+BFAAd=@BfF>"AAB0qB>GUBGD@@G@BBqBG@ `: EMBED Equation.DSMT4 Graphing Simple Functions and Gathering Information
Graph y = x2 - 10 and play it.
Turn calculator on by pressing the ON key on the TI-84 Plus keypad. It is the bottom key in the first column. The calculator will announce the screen it is on and vibrate.
Increase volume to desired level using the SR DOWN or SR UP keys (left and right middle keys, respectively, on the Orion portion).
To place the calculator in speech mode, hold down the SHIFT key and press the TOGGLE MODE key (bottom right plus top left key on the Orion portion), until you are in speech mode.
Press the Y= key (the first TI-84 Plus function key).
If an equation is already present, erase it by pressing the CLEAR key on the TI-84 Plus.
Enter the right side of the above equation after y1= (using the X, T, Theta, n key, the x squared key, the minus key, 1 key, and 0 key on the TI-84 Plus).
Press the Trace key (the fourth TI-84 Plus function key) and first listen to the calculator graph the points. Then the calculator plays Equation 1. You can hear static and feel the calculator vibrate as the graph plays below the x-axis.
If you wish to listen to the graph again, hold down the SHIFT key and press the PREF key ( bottom right plus top right key on the Orion portion), and it will play it again.
To find out where your cursor is, press the ORION down arrow. It first says blank for the middle of the screen area, and then it announces x = 0, y = -10, which is located at the bottom of the screen. To read back through from bottom to top, just press the ORION up arrow.
Find the y value of the function given x.
Make sure the calculator is in speech mode; hold down the SHIFT key and press the TOGGLE MODE key (bottom right plus top left key on the Orion portion), until you are in speech mode.
Go to CALC (2nd, TRACE on the TI-84 Plus), and the calculator will announce that you are in the Calculate Menu and at value.
Select 1: value by pressing the ENTER key on the TI-84 Plus.
The calculator announces x=.
Choose an x value (3) and insert it using the keypad on the TI-84 Plus. Then, press ENTER. The calculator announces x = 3, y = -1.
Find the zeros of the function (where it crosses the x-axis).
Go to CALC (2nd, TRACE on the TI-84 Plus), and the calculator will announce that you are in the Calculate Menu and at value.
Use the TI-84 Plus down arrow to find 2: zero and select it by pressing ENTER.
The calculator announces the function, Left Bound? and the coordinates at which our cursor is located. We have already listened to the graph, so we know its general shape, and we know that it crosses the x-axis twice. We also know which quadrant our cursor is located in. Lets say that the cursor is in quadrant 1.
Place the calculator in Tone mode by holding down the SHIFT key and press the TOGGLE MODE key (on the Orion portion), until you are in tone mode.
Use the TI-84 Plus left arrow to trace the graph.
As we trace going left in tone mode, we can hear it going down and under the x-axis and then up again and over the x-axis. OK, so now we are in quadrant 2 and above the x-axis.
Since were above the x-axis on the left, we hit ENTER to agree to this being our left bound. The calculator asks Right bound? Then, we use the TI-84 Plus right arrow key to trace until we hear that we are below the x-axis (static). We stop and agree to this being our right bound by pressing ENTER. The calculator then asks Guess? We agree to the guess by pressing ENTER, and up pops the answer.
Since we are still in tone mode, we will have to use the arrow keys on the Orion portion to read the coordinates of the zero. (In this case, x = -3.16 and y = 0.)
Go back to CALC (2nd, TRACE on the TI-84 Plus).
Use the TI-84 Plus down arrow to find 2: zero and select it by pressing ENTER.
The calculator again announces the function, Left Bound? and the coordinates at which our cursor is located.
Move a little past this first zero by using the TI-84 Plus right arrow until we hear static and are below the x-axis and hit ENTER to agree to this being our left bound. The calculator asks Right bound? Then, we use the right arrow key to trace until we hear that we are above the x-axis (no more static). We stop and agree to this being our right bound by pressing ENTER. The calculator asks Guess? again. We agree to the guess by pressing ENTER, and up pops the answer.
Since we are still in tone mode, we will have to use the arrow keys on our Orion portion to read the coordinates of the second zero. (x = 3.16 and y = 0)
Of course we could have found the zero on the right side first since our cursor was there, but we chose to be very systematic and go from left to right.
Find the minimum or the maximum of the function. (Some functions may have relative maximums or minimums.)
Go to CALC (2nd, TRACE on the TI-84 Plus), and the calculator will announce that you are in the Calculate Menu and at value.
Use the TI-84 Plus down arrow to find 3: minimum (because we have determined that this function has a minimum) and select it by pressing ENTER. (If it had a maximum, we would have selected 4: maximum.)
The calculator announces the function, Left Bound? and the coordinates at which your cursor is located. Since we have already listened to the graph, we know its general shape, and we know that it has one minimum. We also know which quadrant our cursor is located in. Lets say that the cursor is in quadrant 1.
Place the calculator in Tone mode by holding down the SHIFT key and press the TOGGLE MODE key (on the Orion portion), until you are in tone mode.
We know that it is to the right of the minimum, so we need to use the TI-84 Plus left arrow to move our cursor to the left of the minimum, which will be when the graph starts to ascend again. Once there, press ENTER to select the left bound. Then the calculator asks Right bound? We use the TI-84 Plus right arrow key to trace until we hear that the graph has stopped descending and is now ascending (and has thus passed the minimum). We stop and agree to this being our right bound by pressing ENTER. The calculator asks Guess? Then we agree to the guess by pressing ENTER, and up pops the answer.
Since we are still in tone mode, we will have to use the arrow keys on our Orion portion to read the coordinates of the minimum (or vertex). (x = 0 and y = -10)
Graph y = x + 2 and play it.
Follow the instructions in 1 above, except insert the right side of this equation after y2 = . Use the TI-84 Plus down arrow to reach the y2 = location and press the X, T, Theta, n key, the plus key, and 2 key on the TI-84 Plus.
If the calculator plays the y1 graph, it will announce that it is playing equation 1. Use the TI-84 Plus down arrow to access the y2 graph. To listen to the graph, hold down the SHIFT key and press the PREF key (bottom right plus top right key on the Orion portion). You will hear the graph ascend from left to right, starting with static when under the x-axis.
Find the intersection of these two functions.
Go to CALC (2nd, TRACE on the TI-84 Plus), and the calculator will announce that you are in the Calculate Menu and at value.
Use the TI-84 Plus down arrow to find 5: intersect and select it by pressing ENTER.
The straight line could intersect the parabola in 0 points (if it went below the parabola), 1 point (if it went through its vertex), or two points. However, since we already know that the parabola opens upward and intersects the y axis at -10 (its vertex) and the straight line intersects the y axis at 2 and has a positive slope, we are confident that there are two intersection points.
The calculator announces the function the cursor is on, First Curve? and the coordinates at which your cursor is located. If the cursor is not on the first function, move the cursor to the first function using the TI-84 Plus up or down arrows.
Use any logical method to find a spot to the left of where we think the first intersection might be located. Well use Tone Mode to trace quite far to the left on the first function, stop, and press ENTER.
The calculator asks Second Curve? Check to see if we are on the second function by using the TI-84 Plus up or down arrows.
Use any logical method to find a spot to the left of where we think the first intersection might be located. Well use Tone Mode to trace quite far to the left on the second function, stop, and press ENTER.
The calculator asks Guess? Press ENTER and the calculator announces Intersection. Use the Orion down arrow to read the coordinates of the intersection. (x = -3 and y = -1)
Repeat the above to locate the second point of intersection. However, this time trace quite far to the right on both functions. (x = 4 and y = 6)
Find the slope of the linear equation (or the numerical derivative of another function at a particular point).
Go to CALC (2nd, TRACE on the TI-84 Plus), and the calculator will announce that you are in the Calculate Menu and at value.
Use the TI-84 Plus down arrow to find 6: dy/dx and select it by pressing ENTER.
Use the TI-84 Plus up or down arrows to select the linear equation (2nd equation).
Press the TI-84 Plus left or right arrows (or enter a value) to select an x value to find the slope (or at which to calculate the derivative) and then press ENTER.
The calculator announces the numeric derivative of y with respect to x equals 1. Therefore the slope of the linear equation is 1.
Susan A. Osterhaus Page PAGE 1 DATE 12/8/2013
NV[]abno F M 巯wog_WOCh:1h:15CJ aJ h:1CJ aJ h"CJ aJ hLCJ aJ hWsCJ aJ h
YCJ aJ h"CJ aJ h1"CJ aJ h^4h^45CJ aJ h^4CJ aJ hlT'h:1CJ$aJ$h\CJ$H*aJ$h\CJ$aJ$hlT'h"CJ$aJ$!jhlT'h"CJ(EHUaJ(#jIV
hlT'h"CJ(UVaJ(hlT'h"CJ(aJ(jhlT'h"CJ(UaJ(OPo Q
|i
)S
hi$s
&Fgd
&Fgd_^gd_
&Fgdc
&FgdLf
&FgdAD
&Fgd"$a$gdlT'M Q W \
Q
V
Z
[
]
3AFHgy{|Ը̸ԓthADh"CJ aJ h"5CJ aJ h"5CJ H*aJ h"5CJ aJ h<h<5CJ aJ hLCJ aJ h/CJ aJ h<CJ aJ h"h"5CJ aJ h
YCJ aJ h"CJ aJ h"CJ aJ h1"CJ aJ h:1h:15CJ aJ h:1CJ aJ -h
H
L
M
R
S
'()-01@QRͽŵŝŵ͝͝͵͵͵͍wlhlT'hCJ$aJ$hlT'h:1CJ$aJ$hlT'hcCJ$aJ$h\CJ$aJ$h1"CJ aJ hchAD5CJ aJ hchc5CJ aJ hcCJ aJ h/CJ aJ hADCJ aJ hADhADCJ aJ h
YCJ aJ h!UCJ aJ hADh"CJ aJ hADh"5CJ aJ (RS\k~
!2jxƺ|qeƈ\Th CJ aJ hL5CJ aJ hhc5CJ aJ hchcCJ aJ hLhL5CJ aJ hLCJ aJ h
YCJ aJ h
Y5CJ aJ hchc5CJ H*aJ hLhcCJ aJ hchc5CJ aJ hcCJ aJ hLfhLfCJ$aJ$hLfhLf5CJ aJ hLfhLfCJ aJ hLfCJ aJ hcCJ$aJ$ )*7<?ghi#$67AJQlxlaUhiWh5CJ aJ hhCJ aJ hlBhlB5CJ aJ hlBhCJ aJ hlB5CJ aJ hch5CJ H*aJ hlBCJ aJ hch5CJ aJ h_hcCJ$aJ$h'}CJ$aJ$h_hCJ$aJ$h_CJ aJ h:1CJ aJ hh5CJ aJ hLfCJ aJ hcCJ aJ hCJ aJ lrs!'Lk
CUV`uz%RW\a4@MRSwxథİzİhiWh"5CJ aJ hvCJ aJ hiWhiW5CJ aJ hiWh"CJ aJ h"hiWCJ aJ hiWCJ aJ hiWh.m5CJ aJ hT0CJ aJ h:1h.m5CJ aJ hlT'CJ aJ h.mCJ aJ h.mhCJ aJ hd{h5CJ aJ 0sCu&[J&Z[BE2
&Fgd\
&Fgd^i
&Fgd C/
&Fgd C/^gd C/
&Fgd(V9
&Fgd"
&FgdiW
&Fgd.m
&Fgd/5SfklmovwIƺڤyynbZhvCJ aJ hd{hiW5CJ aJ hhiWCJ aJ hvhiW5CJ aJ h^iCJ aJ hvhiWCJ aJ hT0hiW>*CJ aJ h%xCJ aJ hchiW5CJ H*aJ hchiW5CJ aJ hT0hT0CJ aJ hT05CJ aJ hT0CJ aJ hiWhiWCJ aJ hiWh"CJ aJ hiWCJ aJ IJ`(7Z`%&JOn )>?CFYZ[ƾҾҾҾҾҚҢ|||thG^CJ aJ h C/h"CJ aJ h C/h C/CJ aJ hT0CJ aJ hlT'CJ aJ h C/CJ aJ hvhv5CJ aJ hvCJ aJ hiWCJ aJ hiWhiW5CJ aJ hiWh"CJ aJ h)gCJ aJ h^iCJ aJ hWCJ aJ h.mhvCJ aJ -[%3ABOTU_hs E{
'(ĹĹ걩}qqiaihlT'CJ aJ h)gCJ aJ h:1h^i5CJ aJ h.mh C/CJ aJ h C/h C/5CJ aJ h C/5CJ aJ hiWh C/5CJ aJ h^iCJ aJ h C/CJ aJ h^ih^iCJ aJ h^ih^i5CJ aJ h^ih C/5CJ H*aJ h^ih C/5CJ aJ h^ih C/CJ aJ h\h C/CJ$aJ$$(2h ) 1 2 U Z y !I!믤㻐㻐㤈㜻}rgh$,sh\CJ aJ h$,sh$,sCJ aJ h"Soh\CJ$aJ$h C/CJ aJ h-h-5CJ aJ h\CJ aJ hiWhlT'CJ aJ h-hlT'5CJ aJ h-CJ aJ h)gh)gCJ aJ h)g5CJ aJ hlT'hlT'5CJ aJ hlT'CJ aJ h)gCJ aJ h^ih)g5CJ aJ ( !B#C#q##C$%&' (()***+Y++
&FgdH
&Fgd2^gd2
&Fgd"So
&Fgdl-
&Fgd"So^gd"So
&F
gd\
&Fgd\^gd)gI!J!K!M!O!{!|!}!!!!!!"@"["\"b"""""A#B#C#p#q#w#|#}#õڪwog[Shl-CJ aJ hch"So5CJ aJ h"SoCJ aJ h"SoCJ$aJ$h"Soh"SoCJ$aJ$h\CJ aJ hcha!5CJ aJ ha!CJ aJ h"Soh"SoCJ H*aJ h"Soh"SoCJ aJ h$,sh$,s5CJ H*aJ h$,sh$,s5CJ aJ h$,sh$,sCJ aJ h$,sh\CJ aJ h$,sh\5CJ H*aJ h$,sh\5CJ aJ }#~##########$$$$!$;$B$C$}$$$$%%&&&&&ԾԧumemYQh_
CJ aJ h
h5CJ aJ h=CJ aJ hCJ aJ h?shbKCJ$aJ$hCJ aJ hbKCJ aJ hbKh"SoCJ$aJ$h"Soh"So5CJ aJ h"Soh"SoCJ aJ h^ihl-5CJ aJ h^ihl-CJ aJ hlBhl-CJ aJ hl-CJ aJ hl-5CJ aJ hchl-5CJ H*aJ hchl-5CJ aJ &&&&T''''''''''(( (>(F(V((((((((()-)<)F)s))))***ڻڰꨜûڻwlh2h2CJ$aJ$h?sCJ aJ h=5CJ aJ hHCJ aJ hh5CJ aJ h_
h_
5CJ aJ h_
CJ aJ h?shCJ$aJ$hCJ aJ h?sh?sCJ$aJ$h=h=5CJ aJ h=CJ aJ h2CJ aJ h?sh?sCJ aJ h?shCJ$aJ$&***************++
+++%+.+7+Q+X+Y+l+}+++++++I,N,O,P,˽˱צ|||p||hhHCJ aJ hbhbCJ H*aJ hHhH5CJ aJ hbCJ aJ hHhHCJ aJ hbhHCJ aJ hbhbCJ aJ hbhb5CJ aJ hbh25CJ H*aJ hbh25CJ aJ hbh2CJ aJ h2CJ$aJ$h2h2CJ$aJ$h"SohCJ$aJ$%+Q,,,,,,,,,,,------$a$gd7 dgd>ogd2
&Fgd2P,Q,,,,,,,,,,,,,,------
---------·¬¨h(V9h>oh7h!UhmHnHuhw#hmHnHujh7Uh h7hh[jh[Uh2CJ$aJ$hHhHCJ aJ hHCJ aJ h2CJ aJ 21h:p_/ =!"#$% JDd
b
c$A??3"`?2Xڅ!): pD
`!hXڅ!): ܊ ȽH6x-PMO@}A )h
!"#$%&'()*,-./012589_:<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^Root Entry
FBf7Data
+WordDocument 4TObjectPoolBfBf_1443187071FBfBfOle
CompObjiObjInfo
FMathType 6.0 EquationMathType EFEquation.DSMT49qJTJDSMT6WinAllBasicCodePagesTimes New RomanSymbolCourier NewMT Extra!/ED/APG_APAPAE%B_AC_AE*_HA@AHA*_D_E_E_A
Equation Native 1Table;GSummaryInformation(DocumentSummaryInformation8xOh+'0x
(4@
LX`hpSusan OsterhausNormalSusan Osterhaus15Microsoft Office Word@&UR@@Rb@%fX՜.+,D՜.+,0hp
TSBVIB$TitleH 6>
MTWinEqns
F Microsoft Word 97-2003 Document
MSWordDocWord.Document.89qj666666666vvvvvvvvv666666>6666666666666666666666666666666666666666666666666hH6666666666666666666666666666666666666666666666666666666666666666662 0@P`p2( 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p 0@P`p8XV~ OJPJQJ_HmH nH sH tH J`JNormaldCJ_HaJmH sH tH DA DDefault Paragraph FontRiR
0Table Normal4
l4a(k (
0No ListFZ@F"0
Plain TextdPJ^JaJ>o>"0Plain Text CharCJaJR@R
H0Balloon TextdCJOJQJ^JaJNo!NH0Balloon Text CharCJOJQJ^JaJ424>o0Header
H$6oA6>o0Header CharCJaJ4 @R4>o0Footer
H$6oa6>o0Footer CharCJaJT`rT7
No Spacing$CJPJ^J_HaJmH nHsH tHNoN7No Spacing CharCJPJ^JaJnHtHPK![Content_Types].xmlN0EH-J@%ǎǢ|ș$زULTB l,3;rØJB+$G]7O٭V$!)O^rC$y@/yH*)UDb`}"qۋJחX^)I`nEp)liV[]1M<OP6r=zgbIguSebORD۫qu gZo~ٺlAplxpT0+[}`jzAV2Fi@qv֬5\|ʜ̭NleXdsjcs7f
W+Ն7`gȘJj|h(KD-
dXiJ؇(x$(:;˹!I_TS1?E??ZBΪmU/?~xY'y5g&/ɋ>GMGeD3Vq%'#q$8K)fw9:ĵ
x}rxwr:\TZaG*y8IjbRc|XŻǿI
u3KGnD1NIBs
RuK>V.EL+M2#'fi~Vvl{u8zH
*:(W☕
~JTe\O*tHGHY}KNP*ݾ˦TѼ9/#A7qZ$*c?qUnwN%Oi4=3N)cbJ
uV4(Tn
7_?m-ٛ{UBwznʜ"ZxJZp;{/<P;,)''KQk5qpN8KGbe
Sd̛\17 pa>SR!
3K4'+rzQ
TTIIvt]Kc⫲K#v5+|D~O@%\w_nN[L9KqgVhn
R!y+Un;*&/HrT >>\
t=.Tġ
S; Z~!P9giCڧ!# B,;X=ۻ,I2UWV9$lk=Aj;{AP79|s*Y;̠[MCۿhf]o{oY=1kyVV5E8Vk+֜\80X4D)!!?*|fv
u"xA@T_q64)kڬuV7t'%;i9s9x,ڎ-45xd8?ǘd/Y|t&LILJ`& -Gt/PK!
ѐ'theme/theme/_rels/themeManager.xml.relsM
0wooӺ&݈Э5
6?$Q
,.aic21h:qm@RN;d`o7gK(M&$R(.1r'JЊT8V"AȻHu}|$b{P8g/]QAsم(#L[PK-![Content_Types].xmlPK-!֧60_rels/.relsPK-!kytheme/theme/themeManager.xmlPK-!0C)theme/theme/theme1.xmlPK-!
ѐ' theme/theme/_rels/themeManager.xml.relsPK]
%T EEEHM RlI[(I!}#&*P,- !"$%&')s +-#(%:$+-/6@H!8@0(
B
S ?_GoBack%%$$$$$$$$$%%$$$$$$$$$%%&&II Q V F!F!s!!""T"T""""""""###X####$$$$%%%OFҕquY̜zQ2Cp($6+
v.<*)TDXtl4OHOUT
;Sm[fzcj<="YrTv|JM}Nh^`OJQJo(hHh ^ `OJQJ^Jo(hHoh^`OJQJo(hHhx^x`OJQJo(hHhH^H`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hH^`o(.h^`OJQJo(hH
pL^p`LhH.
@^@`hH.
^`hH.
L^`LhH.
^`hH.
^`hH.
PL^P`LhH.h^`OJQJo(hHh ^ `OJQJ^Jo(hHoh^`OJQJo(hHhx^x`OJQJo(hHhH^H`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@^@`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hHh8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@^@`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hHh8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhp^p`OJQJ^Jo(hHoh@^@`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHhP^P`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHh ^ `OJQJ^Jo(hHoh^`OJQJo(hHhx^x`OJQJo(hHhH^H`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohp^p`OJQJo(hHh@^@`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHohP^P`OJQJo(hHh8^8`OJQJo(hHh^`OJQJ^Jo(hHoh ^ `OJQJo(hHh^`OJQJo(hHhx^x`OJQJ^Jo(hHohH^H`OJQJo(hHh^`OJQJo(hHh^`OJQJ^Jo(hHoh^`OJQJo(hHzOUTDSm[v"YrcOp(6+OFquYJM}v. SMFj=;\:1/AD_
c-Ws"a!1"w#lT'l- C/T0^4(V9<lB)JiW
Y2~b)g^i>o"So$,s?sd{K}bK_v2[
s=G^H.mb!UL7W'}%xLf "LjV$$@%@Unknown G*Ax Times New Roman5Symbol3.*Cx Arial7.@ Calibri5..[`)TahomaG=
jMS Mincho-3 fg?= *Cx Courier New;WingdingsA$BCambria Math"hl&DT@QXBXBqr0$$KQHX $P"2!xxSusan OsterhausSusan OsterhausD
CompObjr